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Abstract 
 

Motivated by the priorities highlighted by Texas Department of Transportation (TXDOT) 
and following the guidelines in the recent presidential “Executive Order on Maintaining American 
Leadership in Artificial Intelligence” in 2019, this proposal aims to utilize the state-of-the-art tools 
and techniques in the field of Artificial Intelligence and Data Science to automatically identify and 
report traffic-related anomalies and hazards using live traffic camera footage across major 
highways and arterial roads in the State of Texas. Examples of such hazards that are the focus of 
this proposal include major vehicle-wildlife and vehicle-debris encounters (VWEs and VDEs 
respectively).  Our work builds on top of the existing massive body of literature and research at 
the intersection of Computer Vision and Traffic Engineering. However, to the extent of our 
knowledge, this proposal is the first attempt to study the development of an automated pipeline for 
the detection and reporting of VWEs and VDEs using live traffic camera data. 

To this aim, we outline and investigate the feasibility of our approach to set up a prototype 
of a pipeline for real-time collection of data, its reduction, segmentation, analysis, and finally, 
drawing traffic engineering conclusions and recommendations based on the detected patterns or 
anomalies in the analysis. 

This exploratory investigation aims to provide a comprehensive review and proof-of-
concept to pave the way toward a larger-scale proposal and implementation of a commercial-scale 
version of such data-analytics pipeline in collaboration with the potential major stakeholders, in 
particular, within Dallas-Fort Worth Metroplex. 
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Chapter 1: Introduction 
 
One of the major goals within traffic management projects are to enhance the flow of traffic for 
economic benefits by increasing productivity and reducing traffic congestion. By alleviating 
traffic, it would be possible to improve upon the impact of traffic congestion on air pollution due 
to vehicle emission and increase the efficiency of said vehicles (Treiber et al., 2008; Wadud et al., 
2016; Fontaras et al., 2017; Pavlovic et al. 2018). The impact of traffic congestion has been 
investigated thoroughly through the years (Rakha & Ahn, 2004; Greenwood et al., 2007; Treiber 
et al., 2008; Barth and Boriboonsomsin, 2008). In fact, recent studies have even found that 
alleviating traffic congestion significantly lowers CO2 emission (Beevers et al, 2016; Mascia et al., 
2017) even up to nearly 20% in the case of southern California (Fiori et al, 2019). Although the 
number of vehicles is certainly the single most important factor in determining congestion, other 
factors can also significantly impact the smooth traffic flow of an area such as road work, traffic 
accidents, and weather conditions (Fontaras et al., 2017). 

Traffic accidents are particularly of utmost importance as they are very often preventable. Traffic 
accidents also lead to economic loss through productivity through traffic congestion, as well as 
direct financial loss through property damage, medical, and legal expenses (Yang et al., 2013). For 
example, Sauber-Schatz et al. (2016) find that if the United States had a mortality rate (between 
vehicles and pedestrians) similar to that of Sweden, nearly 281,000,000 dollars is estimated to be 
saved in direct medical expenses alone. 

In fact, pedestrians account for nearly one-fourth of all road traffic fatalities (see figure 7 of WHO, 
2015) and more than one-third of all deaths and injuries worldwide (Peden et al., 2004). Vehicle-
pedestrian encounters (VPEs) are a leading cause of death for those between 1-54 years old in the 
US (Sauber-Schatz et al., 2016), but also throughout the world (WHO, 2015; Peden et al., 2004). 
Therefore, it is not surprising that an extensive body of research has been invested into this topic 
of avoiding VPEs via computer vision (Dollar et al., 2012; Sivaraman & Trivedi, 2015; Wang & 
Sng, 2015; Xu et al., 2018). Interestingly, simply putting speed cameras in high incident areas to 
measure vehicle speed has been found to greatly reduce the number of accidents (Keall et al., 2001; 
Yang & Kim 2003). This method has also been found to have a high benefit to cost ratio (Gains et 
al., 2003). The topic of speeding vehicles is particularly important as it endangers everyone and 
has been estimated to cost the US $40.4 billion annually (Loce et al., 2013). 

VPEs are not the only source of vehicle accidents, however; vehicle-wildlife encounters (VWEs) 
are also quite prevalent among vehicle accidents in the US. These encounters often result in vehicle 
damage and the loss of wildlife (Allen & McCullough, 1976). Based on a comprehensive 
examination of VWEs delivered to the US Congress by Huijser et al. (2008), The cost attributed 
to these encounters is estimated to be 8 billion dollars annually (not including animals smaller than 
deer and not including domesticated animals). Should the encounter result in the death of an 
endangered species or in the death of a person, the cost could be even higher. Currently, VWEs 
are already classified as a major threat to the survival of endangered wildlife (Huijser et al., 2008). 
It should also be noted that this number is likely underrepresenting the true amount of VWEs as 
this number is derived from carcass counts, the insurance industry, and police-reported crashes. 
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Before a problem like this can be tackled it will first be necessary to improve precision and 
collection methods of data for VWEs. Due to the lack of reliable data on VWEs it is often difficult 
to employ VWE mitigation techniques on roads where it is most needed. Therefore, any work 
which would be able to set up an automated pipeline to acquire and analyze live video footage 
could be very valuable and lead to a more consistent and precise source of data. 

In addition to VPEs and VWEs, there is also the threat of debris on the roadway. Damage to 
vehicles can drastically vary depending on the object of interest. Fatalities resulting from vehicle-
debris encounters (VDEs) seem to be low, but even so, the economic loss is quite significant. In a 
recent report from researchers at Texas A&M, more than 500 accidents within Texas can be 
attributed directly to VDEs and have been rising (Avelar et al., 2017). There have been attempts 
to solve this problem typically in the form of Radar or LiDAR technologies and more novel 
approaches based on Artificial Neural Networks, or a combination of such techniques typically 
using autonomous vehicles (Creusot & Munawar, 2015; Kinoshita et al., 2020). Many times, the 
detection of road debris requires drivers to manually report any obstacles on the roadway. This 
method is not reliable, however, due to the fact that drivers will not be able to identify every object 
that is on the road. Another issue with this method is the possibility of causing traffic accidents as 
drivers on their phones, reporting the debris, will be distracted. There has been progress made to 
address this problem via Basic Safety Messages (BSM) (Concas & Kamrani, 2019). 

With the ever-increasing case of VPEs, VWEs, and VDEs as the number of vehicles on roads 
increases, it is important to find a solution to these issues. This is where computer vision (CV) can 
be helpful. The goal of CV is to automate visual tasks via computers by imitating human vision to 
some degree. CV requires the gathering, processing and, analysis of footage or videos to make 
inferences. CV is used in a variety of tasks ranging from reading handwritten postal codes, medical 
imaging, vehicle safety, etc. (Szeliski, 2010). Particularly in the case of VDEs, VPEs, and VWEs, 
we are interested in being able to identify and track relevant human, wildlife, car, or unidentified 
objects on roads. Over the past few years several various automatic generic image segmentation 
frameworks have been developed within the CV community, such as R-CNN, Fast R-CNN, Faster 
R-CNN, Mask R-CNN, YOLO, YOLOv2, YOLOv3, and YOLOv4. These frameworks implement 
various forms of Convolutional Neural Networks (CNNs) for object detection. CNNs are part of 
the field of deep learning and are most commonly used to inspect images by using multiple hidden 
layers which are interconnected such as neurons in the brain (hence the name neural network). 

The detection of wildlife on roads is virtually untapped despite being fairly similar to that of 
pedestrian detection. This is despite the fact that wildlife detection is far less complex as animals 
typically do not congregate en masse as opposed to pedestrians, making their individual detection 
a much simpler task than that of pedestrians (Xu et al., 2018). 

In this work, we will be discussing deep learning techniques used in traffic engineering problems 
in chapter 2. In chapter 3, we will discuss the various problems in analyzing VWEs and VDEs. In 
chapter 4 we will discuss object detection frameworks and how they were implemented in this 
work. Finally, we will discuss the work done as part of this project toward establishing a pipeline 
for image segmentation and analysis traffic camera footage in chapters 5. Future goals and the 
roadmap ahead will be discussed in Chapter 6. 
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Chapter 2: Deep Learning Techniques for Image 
Segmentation of Traffic Camera Footage  

 
Deep learning is part of a broader family of techniques known as machine learning whose objective 
is to teach computers to learn from previous experiences using an intricate web of connections 
known as neural networks. The applications of deep learning go far and wide, from language 
processing, bioinformatics, speech recognition, etc., for the goal of ultimately classifying an 
object, shape, or sound. In the case of the work described throughout this report, we are primarily 
interested in the classification of objects within an image. Therefore, in this section, we will be 
describing some of the basic techniques that are typically used. 
 
2.1 Convolutional Neural Networks (CNNs) 
 
In biology, neural networks are interweaved neurons that transmit electrical signals throughout the 
brain relaying information. In a similar fashion, neural networks in computers are an 
interconnected group of nodes that are fed some examples of the task it is to complete and over 
time “learns” how to complete these tasks on its own. A depiction of a very simple neural network 
is given below in Figure 1. If the input is a question such as “Do I want to go to the park?” then 
in the hidden layers we would have three different conditions with differing levels of importance 
such as “Is the weather good?”, “Is someone going with me?”, and “Is it late at night?”. If we 
assign some “weight” to each question, say 2, 7, ad 3 respectively, and set a threshold of 5, then 
depending on how we answer the previous questions, we may or may not go. For example, if we 
answer yes to the first and last question we will go to the movies, but if we only answer yes to the 
first question we will instead stay home. Neural networks of course are more complex and typically 
have many more layers and more Perceptrons per layer such as the case of CNNs. 
 

 

Figure 1: A depiction of a simple neural network. Each circle represents a perceptron, and each 
arrow represents some sort of information "flowing" between Perceptrons. 
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A CNN is an artificial neural network that is created to specialize in recognizing some kind of 
pattern and make sense of it, typically within an image. The idea of a CNN is much like the neural 
network within Figure 1, but the hidden layers are what is known as convolutional layers (in 
addition to its non-convolutional layers). Within each of these convolutional layers, we have a 
filter. Each filter will have its own tasks such as detecting straight lines, squares, or circles. As the 
number of hidden layers grows so too does the complexity of our filters which are perhaps now 
looking for eyes, a nose, etc. So how does this work? We can imagine we have two boxes of values 
represented by the green box and magenta box in Figure 2 where the green box is a matrix of 
values corresponding to our image and the magenta box represents the filter. As we move the filter 
across the area we take the dot product of the values in the magenta and green box or that is to say, 
we convolve the layers. We keep doing this until eventually we end up with our set of numbers 
called our convolved feature. In the case of identifying numbers, this last convolved feature may 
represent edges on the left side or edges on the right side, etc. depending on the filters we pass 
through. 
 

2.2 Background subtraction 
 
Another important step in image segmentation via deep learning methods is that of background 
subtraction which is used for tasks such as counting, detecting, and tracking vehicles. The aim of 
background subtraction is to essentially determine which objects in an image are static (part of the 
background) and what objects are moving (part of the foreground). One of the simplest forms of 
background subtraction is that of frame differencing. This method requires one to look at some 
frame for time “t”, and the frame before at “t-1”. We then simply take the absolute value of the 
difference between the two frames and if this value ends up being greater than some threshold we 
have set, then we will take it as our foreground. This technique, however, may struggle to track 
interior pixels for large moving objects such as the top of a white van. 

Figure 2: A depiction of how a CNN works. The magenta can be thought of as a filter. As this filter 
"slides" across the green area we take the dot product of the values from the green area with that 
of the magenta. Eventually we end up with a convolved feature (the orange) 
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Another method of background subtraction that is commonly used due to its accuracy is the 
mixture of Gaussian distributions (Piccardi 2004) also known as the Gaussian mixture model 
(GMM).  This is a method typically used for clustering but is applicable to the field of image 
segmentation. The main assumption of this method is that a distribution of points is comprised of 
multiple Gaussian distributions, hence the name. The method can be understood by looking at 
Figure 3. First, we start out by assuming that our set of points from a given traffic camera image 
is represented by two Gaussian distributions. Then we test to see how close the points fall to each 
of these distributions and assign a probability to each point that tells us the distribution to which 
the point most likely belongs to. In this case, we find that the points seem to fall closer to the green 
distribution and therefore the mean of our distribution increases toward the right and the standard 
deviation increases to include the wide range of points that are more likely to be part of the green 
cluster. Meanwhile, the magenta distribution remains almost unchanged due to the fact that not 
many points fall close to the magenta distribution. 

When it comes to using this method for background subtraction, we start by separating our video 
into three parts: the red, blue, and green channels. We then model each channel as a bimodal 
Gaussian distribution; one which represents the foreground and the other which represents the 
background. Once we have our model, we then use the most weighted cluster as our background 
and the least weighted as the foreground. In videos where objects such as vehicles are not moving 
for long periods, this methodology may mistake a vehicle as part of the background, but by using 
longer duration videos this type of error in background detection can be minimized. 

  

Figure 3: A depiction of how the GMM clusters a set of points probabilistically. The points to the 
right side of the green distribution are closer to the green distribution with some likelihood 
(represented as a percentage). Since the points on the right side fall closer to the green 
distribution, the mean of the green distribution is shifted right and its standard deviation increases. 
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Chapter 3: Challenges in Traffic Camera Footage 
Image Segmentation  

 
3.1 Projection of 2D Images to 3D 
 
One of the most difficult problems in traffic engineering is being able to accurately measure the 

distance from the traffic camera. The distances of objects seen within camera footage is a necessity 

if we are to accurately measure how far apart objects are (such as pedestrians and vehicles) as well 

as accurately measuring the speed at which cars are traveling (Dubská, 2014; Sochor, 2017; Kumar 

2018; Sochor, 2018; Lu 2020). The problem of determining the 3D coordinates from a 2D image 

is known as a perspective-n-point problem. For this reason, many papers have already 

implemented methods to estimate camera parameters. The parameters of the camera are the 

intrinsic parameter matrix, as well as the rotation and translation matrix (Hartley, 2004; Sochor, 

2018; Wang, 2018). The intrinsic parameter matrix consists of the focal length, the skew (which 

is normally assumed to be zero), and the principal point (the center point of the cameras view). 

The camera calibration process is one of the most important as it will influence the accuracy of 

any distance and speed measurements that are estimated. The way this problem is formulated 

mathematically is given by 𝑷𝑷 = 𝑲𝑲 [𝑹𝑹 𝑻𝑻] where P is the projection matrix, K is the matrix of 

intrinsic parameters, normally written as  

𝐾𝐾 = �
𝑓𝑓𝑥𝑥 𝑠𝑠 𝑢𝑢𝑜𝑜
0 𝑓𝑓𝑦𝑦 𝑣𝑣0
0 0 1

� 

 

Where 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 are the focal lengths, 𝑠𝑠 is the skew, and (𝑢𝑢𝑜𝑜 , 𝑣𝑣𝑜𝑜) is the principal point. If we assume 

a zero skew (Lv, 2006; Krahnstoever, 2006; Wu, 2007; Sochor, 2018; Wang, 2018) then 𝑠𝑠 = 0 

and the focal lengths will be equal as well: 𝑓𝑓 = 𝑓𝑓𝑥𝑥 = 𝑓𝑓𝑦𝑦. Additionally, R is the rotation matrix, and 

lastly, T is the translation matrix. 

One solution to this problem is simply to first know our camera’s parameters and then to measure 

the real-life distance that the camera's view spans therefore giving us the perspective within a 2D 

image. This methodology, however, is not feasible on a large scale and so we require a more 

rigorous approach that allows us to first estimate the camera parameters. 
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Various methodologies have already been developed; however, the majority of the existing 
techniques require some manual measurements that are specific to a particular camera mounted on 
a specific road. Hence, these techniques are not generic and not automatically applicable to every 
road. For example, the work of Cathey et al. (2005) requires the use of finding a vanishing point 
using lane marks. A depiction of a vanishing point is given in Figure 4. But it is also necessary to 
know the width of the lane markings to find the scale factor using their proposed camera calibration 
technique. Similarly, techniques employed by Grammatikopoulos et al. (2005), He et al. (2007), 
You et al. (2016), Kumar et al. (2018), Huang (2018), and Tran et al. (2018) each require using 
lane markings to detect one or more vanishing points in an image. The potential difficulty with 
this approach is that the lane markings on the roads might not be clearly visible in camera footage 
due to construction or simply old age of the markings. Additionally, in the case of You et al. (2016) 
a measure of the height of the mounting point of the camera with respect to the ground is also 
needed for proper scaling in the camera calibration process. In the case of Kumar et al. (2018), it 
is also required to know the lane width to determine the proper scale factor. 

To circumvent any issues that may arise from using lane markings, other works have been 
proposed which use vehicle movement to determine the vanishing points within an image (Dailey, 
2000; Schoepflin et al., 2003; Zhang, 2008; Dubská et al., 2014; Filipiak et al., 2016). 

Figure 4: depiction of a vanishing point. The intersection of the two lines is what is known as a 
vanishing point and gives the perspective of a 2D image, allowing us to then find 3D coordinates. 
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Nevertheless, there are still limitations to many of the existing proposed methods that make them 
less feasible for a large-scale implementation. For example, Schoepflin et al. (2003) require that 
at least one known measurement be input manually for each camera in order to infer the scale of 
the image, Zhang et al. (2008) require the knowledge of the height at which the camera is placed 
to infer the intrinsic and extrinsic camera parameters. Similarly, the method of Filipiak et al. (2016) 
can only be used with ANPR cameras which are cameras placed in such a position that they can 
only view very small portions of the road in order to enhance the ability of plate recognition. 

To our knowledge, the only work that is both fully automated and can be used for any viewpoint 
is that of Dubská et al. (2014) as described also in Sochor et al. (2018), which relies on acquiring 
two vanishing points. This methodology will be described in this report as it is needed for accurate 
speed measurements. This methodology first begins by using a foreground detection model to find 
any movements within the images. The use of foreground detection is important for any problem 
which requires an algorithm to detect changes over time in an image. From here, it is possible to 
create the bounding boxes of cars through the use of a min eigenvalue detector, KLT tracker, and 
line-to-line Hough transformation (Dubská et al., 2013; Dubská et al., 2014). A depiction of such 
boxes is given in panel a) of Figure 5. 

Once they have found the bounding boxes of the vehicles, it is then possible able to create a grid 
representing the perspective of the image and find the two vanishing points corresponding to the 
“x” and “y” coordinates of this plane (Figure 5. Panel b). From this point on, the act of measuring 
the speed is quite simple as we now know the true distance the vehicles are traveling (with some 
error since camera calibration will not be perfect) and we also know the length of time for any 
video recorded. 

Figure 5: a) a schematic of the bounding box created by the method of Dubská et al. (2014) b) 
Schematic of how the bounding box can be used to find create a grid in order to find 2 vanishing 
points.  

 
(a) (b) 
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3.2 Wildlife Interaction With Vehicles 
 
As the number of vehicles on the road increases and as the road is constructed through various 
natural habitats, the number of vehicle-wildlife collisions (VWCs) has also increased, making 
VWCs a major safety problem (Hughes et al., 1996). In order to reduce such incidents, various 
measures have been implemented. First of such methods is the construction of overpasses and 
underpasses (Dodd et al., 2004; Tissier et al., 2016). For this, the distribution patterns of the VWCs 
have to be initially determined (Puglisi et al., 1974; Krisp and Durot, 2007; Ramp et al., 2005, 
2006; Mountrakis and Gunson, 2009). Based on this information, the location for the construction 
of such mitigation measures is then implemented. These overpasses and underpasses have been 
relatively effective in reducing such VWCs (Clevenger and Waltho, 2000; Foster and Humphrey, 
1995; Dodd et al., 2007; Mata et al., 2008). 

 

However, the construction of such features i.e. wildlife-crossing structures is not feasible in most 
areas. Another method that is commonly used is to put up traffic signs so as to alert the driver 
about potential wildlife encounter ahead. However, the efficacy of this method has been questioned 
in some studies (Pojar et al, 1975). For example, motorists respond to the signs by reducing vehicle 
speed, however, the amount of speed reduction is too small to be of practical importance. Traffic 
cameras have been also extensively used for wildlife crossing detection (Ford et al., 2009), 
although, during the nighttime or when the sunlight is directly facing the camera, this method 
might not work properly. This limitation of traditional cameras while detecting the presence of 
wildlife can be mitigated by the use of thermal cameras (Zhou et al., 2012, Christiansen et al., 
2014). One of the algorithms that can be used to detect wildlife using thermal cameras is by using 
“counter-based pattern recognition” (Zhou et al., 2012). In addition to thermal cameras, sensors 
have been also utilized in determining the presence of wildlife near roadways. Typically, two types 
of sensors are used: “area cover sensors” or “break-the beam sensors” (Huijser et al., 2006). Area 
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cover sensors detect the presence of large animals within the working range of the sensor either by 
“only receiving signals” or by sending “a signal over an area” and measuring “its reflection.” 
(Huijser et al., 2006). On the other hand, break-the-beam sensors consist of a transmitter, which 
sends out laser or microwave signals, and a receiver. It then detects the presence of wildlife when 
their body interferes with this continuous stream of signals (Huijser et.al., 2006). Regardless of the 
sensor type, warning signs get activated as soon as animals are detected. This will then alert the 
drivers to reduce speed and watch for animal encounters, thus playing an effective role in reducing 
VWCs (Huijser et al., 2006). 

 

Figure 7: Example of the use of the sensor for mitigating VWCs. (Photo: Robert Weinholzer, 
MNDOT) 

Recently, state-of-the-art technologies have also been implemented to mitigate VWCs. One such 
technology is via light detection and ranging (LiDAR) technology. For instance, LiDAR has been 
used where the data processing procedure included background filtering, object clustering, and 
object classification (Chen et.al., 2019). The method is reportedly able to detect deer as far as 
approximately 30m from the installation location of the LiDAR (Chen et.al., 2019). Another recent 
technology that is being used is artificial intelligence (AI). Specifically, AI is used in conjunction 
with other systems for wildlife monitoring. For instance, Gonzalez et al. (2016) use AI in order to 
process images from thermal cameras for monitoring wildlife. In the field of artificial intelligence, 
the use of deep learning is becoming more prominent for wildlife detection. Deep learning is 
specifically used for object detection in images taken via cameras. There are different types of 
deep-learning-based object detection techniques and tools such as Faster R-CNN, YOLO, which 
are capable of identifying animals for which the models have been trained. For instance, Schneider 
et al. (2018) show a comparison of two such deep-learning-based object detection algorithms: R-
CNN and YOLO using images taken from camera traps. Bonneau et al. (2020) use a time-lapse 
camera along with YOLO to detect wildlife. In another example, Sato et al. (2021) used YOLO 
which provided different signals corresponding to different types of wildlife detected, thus 
showing the potential to embed it as an alert system near roadways to reduce VWCs.  
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3.3 Debris Detection 
 
Vehicle-debris encounters (VDEs), although uncommon, are costly. There have been numerous 
attempts at solving this problem. Nevertheless, several outstanding problems still remain to be 
solved, such as the effective detection of small objects on roads and the detection of objects in 
poor environmental conditions (Loce et al., 2013). Another challenge in detecting road anomalies 
is due to the poor quality of the conventional datasets used for object detection (Creusot & 
Munawar, 2015; Chan et al., 2021). This section provides an overview of the relevant studies on 
this topic.  
 

Creusot & Munawar (2015) discuss a methodology for detecting any object that is not part of the 
road by introducing a new methodology that they name as “patch appearance reconstruction”. This 
methodology for debris detection on roads uses a compressive Restricted Boltzmann Machine 
(RBM) trained exclusively to reconstruct the road which is an Autoencoding Neural Network 
which the authors have trained specifically for the task of road reconstruction. Their proposed 
methodology is in response to the lack of studies attempting to detect anomalous objects at very 
high speeds which is a difficult task. Their use of an RBM is mainly due to the quick execution of 
their online pipeline without any additional stress put on the hardware, making it the ideal choice 
when attempting to find anomalies in real-time. The process can be summarized in three steps: 1) 
the preprocessing stage, 2) offline training, and lastly 3) the online pipeline. First, in the 
preprocessing stage, they find a video of the road and manually choose a portion of the video to 
view. From here they then perform their offline training: this part requires feeding the image to 
the RBM and retrieving the weights and saving it for the online pipeline. They then define a 
reconstruction vector and attempt to determine the parameters (weight matrix, hidden/visible 
biases vectors) which minimize the sum of the squared residuals of the reconstruction to identify 
the best-fit parameters. For the online pipeline, they feed the normalized image into the RBM with 
the weights calculated in the offline mode to create the reconstructed image. Finally, they calculate 
the difference between the reconstructed and true image to find any anomalies. 
 

In a more recent work by Lis et al. (2020), the authors propose a method of detecting anomalies 
by inpainting patches of an image and then comparing the original patch to the inpainted version 
via a discrepancy network in order to detect differences i.e., anomalies. The previous sentence 
essentially summarizes the two-step approach that the authors suggest. The authors begin their 
method by first using an inpainter from Yu et al. (2019) that is trained on a scene recognition 
dataset named Places2 which works to make the inpainted patches look as realistic as possible so 
that the road may be later reconstructed. However, the authors also note that unless the object is 
entirely enclosed within a patch, the anomalous object will also be recreated in the inpainted 
version which is an unwanted outcome. To solve this issue, the authors suggest using patches that 
have an overlap of 0.7 to increase the possibility that an object will be enclosed by at least one 
patch. Next, the authors describe their discrepancy network whose purpose is to differentiate 
between any differences between the original image and any artifacts left behind by the inpainting 
process, however, this network must first be trained. For their work, the authors choose the 
synthetic dataset of Cityscapes (a common dataset used for assessing how well a program performs 
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at a given task for an urban scene). Once the discrepancy network has been trained it is then fed 
into a Visual Geometry Group (VGG) CNN model for extracting features. Once the features are 
extracted they are then passed to an upconvolutional pyramid to create a heatmap of where 
anomalies exist in the image. After testing this methodology using the Fishyscapes benchmark, it 
was found to be the best performing in average precision, but poorly in their false positive rate 
(FPR) except for in one case. The authors explain that this poor score in FPR is due to road 
boundary detection algorithms and that this score will increase over time as these algorithms 
improve. 
 

One drawback of two aforementioned methods is that they are both implemented for autonomous 
vehicles and have not been tested on mounted cameras at far distances such as those used in live 
traffic footage. The subject of detecting obstacles from live traffic footage also seems to be a field 
left largely unstudied. Additionally, the work of Lis et al. (2020) also criticizes the method used 
by Creusot & Munawar (2015) for being limited to roads that are not considered “textured”. For 
these reasons, we have decided to construct our own methodology to be tested and is described in 
chapter 5 of this report.  
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Chapter 4: How to Detect and Track Objects? 
 
For any problem in which we are trying to classify an object such as a pedestrian, animal, or vehicle 
we need some type of architecture that will be able to classify such an object using deep learning 
techniques such as CNNs. The idea of object detection truly took off after the success of region 
proposal method given by R-CNN (Girshick et al., 2014). The initial implementations were very 
slow. However, over a short time span, new significantly improved algorithms and 
implementations emerged. For the proposes of this project, one could create a new dedicated CNN 
model. Given the extensive set of available tools and pretrained models and the variety of options 
for use such as R-CNN, Fast R-CNN, Faster R-CNN, and YOLOv4, we have tested some of the 
best implementations for suitability for usage in this work. We are specifically interested in a 
pretrained algorithm that can perform real-time image segmentation and object detection. This 
narrows down our choices to specifically two implementations: Faster R-CNN and YOLOv4. 
Additionally, we want to be able to track the object through time, so we also use YOLOv4-deepsort 
found on the GitHub page associated with the account name “theAIGuysCode”. 
 
4.1 Faster R-CNN 
 
The Faster R-CNN method begins by defining a region proposal network (RPN) by dividing the 
image into multiple proposal areas where an object could possibly be found. This works by creating 
what is known as an anchor/bounding box which are simply boxes of different sizes, such as a 
wide rectangle or a tall and wide rectangle, etc. The reason for this is to attempt to detect an object 
of any size located within an image. Then a method is defined for deciding if an object will be 
detected or not using an intersection over union (IOU). This method looks at the bounding boxes, 
one being a prediction and the other being the true bounding box. If the percentage of overlap is 
above some minimum threshold, an object is detected, otherwise, it is not detected. Finally, the 
bounding box with the greatest percentage will be considered the true bounding box and therefore, 
part of the foreground. Any area where there is no object is considered part of the background. 
This part of object detection will be done using CNNs, giving an output of features. From here, 
any object within the foreground class then continues on to the next layer known as the region of 
interest (ROI) pooling. We feed different sizes of feature maps extracted from the previous step 
into the ROI to reduce any feature maps to the same size matrices, essentially what is being done 
here is that we are putting this ROI into a Fast-RCNN with pooling, fully-connected layers, and 
lastly a softmax layer regressor for the bounding box. 
 
4.2 YOLOv4 
 
The Yolov4 algorithm begins by an architecture breakdown i.e. the backbone, neck, and head 
(Bochkovskiy et al, 2020). The backbone refers to the type of network which we want to feed our 
data into, such as a VGG network, Darknet, etc. in order to extract features from an image. The 
neck section tries to increase the ability to discriminate between different features using tools such 
as a feature pyramid network (FPN). Lastly, the head is the section that handles the prediction and 
in the case of YOLOv4 uses a one-stage process, otherwise known as a dense prediction. Let us 
next talk about the “Bag of Freebies” which is a method which only changes the training strategy 
or increases the training cost which gives us an improvement in the detection of objects essentially 
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for free without any extra work. Next, Bochkovskiy et al. (2020) discuss the architecture selection 
criterion. The objective of this step is to find a balance between the input image size, the number 
of convolutional layers, and the number of filters for feature extraction. Also, we want a very good 
“neck” to aggregate features from the backbones. The architecture of YOLOv4 is as follows: the 
backbone is CSPDarknet53, the neck is SPP+PANet, and lastly, the head is YOLOv3. Beginning 
in the backbone, YOLOv4 uses what is referred to as a cross-stage partial (CSP) connection to 
remove duplicate gradient flow information that is present with DenseNet and therefore the 
accuracy and speed of YOLOv4 is increased. The spatial pyramid pooling (SPP) method allows 
changing of the input size using different sized max pool layers. Overall, given the speed to 
accuracy ratio, YOLOv4 seems to outperform nearly every method on Volta and Pascal GPU 
architectures, however, falls short somewhat using the Maxwell architecture in the number of 
frames per second, but outperforms other architectures in accuracy.  
 
4.3 Tracking With DeepSORT 
 
DeepSORT is a powerful method that expands upon Simple Online Real-time tracking (SORT) 
and allows for the tracking of multiple objects. For this section, we will be using the methodology 
as described in the paper of Kumar et al. (2021). The authors first start by splitting their problem 
into three parts: object detection, tracking of objects, and lastly zonal counting. For object 
detection, we are using the YOLOv4 algorithm which comes with pre-trained weights and whose 
algorithm is discussed in section 4.2. For the tracking of objects, a crucial component is that of 
Kalman filters which is a filter comprised of a distribution for sensor confidence and for motion 
confidence. When an object is in full view, more weight will be put on the sensor confidence and 
when the view of an object is obstructed, we put more weight on the motion confidence. To better 
understand the DeepSORT algorithm, we begin by estimating the position of an object given its 
previous position, in this step we care only for the spatial information. We then extract a feature 
vector or appearance descriptor which describes features detected within an image by comparing 
the current frame to the previous frame. This feature vector is a trained CNN that extracts features 
such that features for differing objects appear to be far apart but features for the same object are 
close together. This is done by using what is known as the Mahalanobis distance (a non-Euclidean 
distance measurement). Then, any new detection from incoming frames is connected to the 
previous tracks using the feature vector and the estimated position based on the last frame 
assuming that the confidence level is above the threshold. The last section, zonal counting, is 
unrelated to DeepSORT and therefore is not discussed here.  
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Chapter 5: Establishing A Workflow for Automated 
Analysis of Traffic Camera Footage 

 
5.1 Data Collection for the Analysis of Wildlife Vehicle Encounters 
 
We focused on deer-vehicle collision sites. Accordingly, we searched the available online 
databases of traffic camera footage for sites with the highest number of deer-vehicle collisions 
(DVCs). Based on the research by StateFarm1 we found out that West Virginia had the highest 
number of deer-vehicle collisions. Consequently, we identified the website 511 (http://wv511.org) 
in West Virginia, which provides live traffic camera footages. This website provides many traffic 
camera footages in West Virginia, many of which do not necessarily contain high rates of and live 
cases of DVC. Since the analysis of all videos were nearly impossible, we focused our attention 
on the locations where there was already a high likelihood of seeing deer-vehicle encounters.  
 
Our extensive searches led us to a report by Nichols et al. (2014), submitted to the Department of 
Transportation of West Virginia. This report summarizes data from 2008-2012 on crashes related 
to deer and carcass. Nichols et al. (2014) categorize the frequency of DVCs according to some 
county and provide the location of such collisions on the maps. We used this information about 
the locations of incidents to identify potential live traffic camera footages for subsequent collection 
and analysis. One major challenge, however, turned out to be the far distance of the traffic camera 
from the exact location where most DVCs are reported. Hence, we performed a secondary 
comprehensive search among all available traffic camera footages within the State of West Virgnia 
and finally identified a traffic camera site which was very close to a reported DVC 
site. Unfortunately, the latter camera site was also far from ideal as it only captured a certain part 
of the collision site. We monitored and collected the candidate camera for extended periods of time 
throughout this project. However, all of our search efforts for detecting deers or other animals in 
the collected frames were unsuccessful. As an alternative, we collected some pre-recorded camera 
footages publicly available from other countries, specifically, Japan, that we subsequently used for 
testing. 
 
Our method to mitigate Vehicle-Wildlife Collisions (VWCs) is to analyze and keep a record of 
certain live traffic camera footages using YOLO where the animals were detected. Such recorded 
video segments can be collected over time to create a map of spatial presence of animals on roads 
which could be then used to identify potential animal corridors and take the necessary VWC 
mitigation steps in those areas. The lack of continuous reliable stream of data from potential sites 
of VWCs, significantly limited our ability in successfully implementing and testing the proposed 
pipeline. However, we were able to test the fundamental concepts of the proposed pipeline via pre-
recorded footages. An example of animal detection in one of our pre-recorded videos is given in 
Figure 8. Although the algorithm is capable of identifying the object as an animal, it fails to 
recognize the animal (deer) correctly. The fact that the algorithm labels a deer as a cow in the given 

 
1 AASHTO Journal. 2018. State Farm Survey: Deer-Vehicle Collisions Dropping, But Costs Rising. [online] Available at: 
<https://aashtojournal.org/2018/10/12/state-farm-survey-deer-vehicle-collisions-dropping-but-costs-rising/> 
[Accessed 21 October 2020]. 
 

http://wv511.org/
https://aashtojournal.org/2018/10/12/state-farm-survey-deer-vehicle-collisions-dropping-but-costs-rising/%3e
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frame highlights the importance of continuous training of Deep Learning models with more and 
more labeled data to improve their accuracies. 

 
Figure 8: An example of animal detection using YOLO 
 
The workflow setup created to achieve the goal is illustrated in the following chart2. 

 
 
Figure 9: Flowchart for the overall working process of the algorithms developed in this project. 
 
In brief, a python script downloads and stores a 10 seconds video camera footage from the traffic 
camera website. The downloaded stream is subsequently passed to the YOLO algorithm for 
potential object detection. If any object is detected, the program will start recording and generating 
an output video file containing the image segmentation analysis. If no object is detected, the 
program will discard the downloaded footage and no output analysis file is generated. The process 

 
2 https://github.com/cdslaborg/traffic 



18 

 

is then repeated with the next 10 seconds of downloaded video and continues for as long as desired. 
In summary, if a certain object is detected within a particular 10 seconds video file, the python 
script generates two video files: one is the original 10 seconds file, and the other file, which will 
contain the labeled objects in the video as the output of the analysis. However, if no object is 
detected, then there will be no files since there is no labeled object in the image and the original 
video file is also deleted. 
 
5.2 A Pipeline for Detection of Road Debris and Anomalous Driving 
Patterns in Roads 
 

In this section, we briefly describe the approach we adopted for detecting debris in roads, and more 
generally, for detecting anomalous patterns of driving in highways and streets. Road debris 
detection is an extremely challenging task given the existing camera technologies and image 
segmentation algorithms.   

The difficulty in road debris detection stems from the lack of a particular shape for road debris, 
making them extremely difficult to detect for the existing Deep Learning algorithm. As such, our 
method of road debris detection relies on indirect methods of searching for anomalous vehicle 
behavior in roads. Here, anomalous behavior is defined with respect to the behavior of the majority 
of vehicles in the same road in the past. For example, if a debris suddenly blocks a lane in a 
highway, most vehicles will try to avoid the debris by changing lanes or significantly reducing 
their speed. This sudden change in vehicle behavior does not necessarily imply the presence of 
road debris, however, it can be a clear indication of the presence of an anomaly in the road, for 
example, an intoxicated driver. Therefore, the above approach is generic, and it can aid automatic 
detection of strange behaviors and deviations from formal routes of driving in roads. 

The essence of the idea that we pursue here is that by continuously collecting traffic camera 
footage, we can identify the normal routes of transportation in camera footages such that any 
vehicle tracks that deviates from the normal routes (taken by the majority of vehicles) triggers an 
alert for a possible anomalous behavior on the road. Such anomalies could be due to drivers 
suddenly changing lanes because of the presence of road debris, a crash, or simply imply the 
presence of a careless driver.  
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To achieve the goals, a script was written to automatically parse the camera footage contents from 
multiple city websites across the United States which held the live videos. The script automatically 
clicks on “show video” button in the websites and then extracts the link to the camera by inspecting 
the page and looking for relevant links. Then, we import the VLC media into python to download 
the live camera footages to the local system, first checking if the video is playing and the link is 
not dead. If the live feed is dead, then the script moves on to the next live traffic feed. After 
recording the live traffic videos, we then reduce the camera footages to coordinates of vehicles in 
the frames of videos using the yolo-deepsort algorithm. The reduced data is significantly smaller 
in size than the original camera footages and is in comma-separated format (CSV). It summarizes 
the movements of all objects in a video stream into a set of adjacent points each set of which 
represents the trace of a single object in the footage. These objects could be pedestrians, cars, 
trucks or other types of vehicles or animals. Once the objects are classified, a particular category, 
for example, vehicles can be selected for further studies.  

Figure 10: a) An example of vehicle track detection performed on a road in Seattle on the left. 
The corresponding tracks of cars are plotted using the generated CSV file. b) An image of live 
traffic footage from Tokyo shown on the left on which we performed our analysis. On the right 
we have the tracks inferred from the segmentation of the traffic camera footage. 

 

 (a) 

(b) 



20 

 

As an example of this process, we can look at Figure 10. In panel (a) we are looking at publicly 
available live traffic feed from Seattle, Washington on the left. We record this camera footage for 
a set amount of time, save it, and then analyze the video via yolo-deepsort algorithm. An output 
file is then generated from this analysis, giving the coordinates for each pedestrian, car, and truck 
in the video. From this we can then plot the tracks inferred from the camera footage as illustrated 
on the right plot of Figure 10, panel (a). Once this summary output file containing the object tracks 
is created, there is no longer a need to keep the original video and it is deleted to save storage 
space. Figure 10, panel (b), illustrated the same process applied to a different live camera footage 
from Tokyo, Japan. 

A major challenge arises at this point in the analysis: First, the temporal analysis of the footage in 
search of anomalies relies on measuring both temporal and spatial deviations form normality. 
Examples of such deviations are sudden speed reduction or sudden change of lane, respectively. 
Both of these require a measure of scale in the frames and the vanishing point in the camera 
footages. This information is essential since a significant deviation that happens far from the 
camera would not be detectible, whereas a small deviation from the normality would be flagged 
as an anomalous pattern of driving or motion. 

For the purposes of spatial analyses, specifically, the perspective and vanishing point can be 
resolved if we instead focus on anomalies in the angles of motions instead of anomalies in object 
displacements. This idea is illustrated in Figure 11. First, we look at 3 points on a certain path and 
calculate the angle formed by the two vectors that connect the three points. We then draw a circle 
with a radius that encompasses all three points, similar to what is seen in panel (a) of Figure 11. 

(a) (b) 
Figure 11: a) A schematic illustration of two paths (magenta) which are labeled as normal paths 
that most cars take due to their similarity and proximity, versus an anomalous path (orange track). 
As seen, the two magenta lines tend to follow a very similar path, only slightly deviating from one 
another, thus forming very similar angles formed by the adjacent points in each track. Conversely, 
the orange track deviates largely from the others, which could be an indication of the presence of 
an anomaly in the road, such as road debris. b) An illustration of the angles formed by adjacent 
points in each track in an example camera footage. Any point which lies three standard deviation 
outside of this distribution is labeled as a potentially anomalous behavior. 
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When at least 2 points of another trajectory fall within an already existing circle, we include it as 
part of the distribution of angles for that neighborhood, otherwise, we draw a new circle to 
encompass these new points. Now, for each neighborhood (corresponding to one circle) we will 
have a distribution of angles with some mean and standard deviation for each circle drawn (as seen 
in panel b of Figure 11). From here we then determine the angles formed by the points of new car 
trajectories traveling through each circle. Next, we determine if the newly calculated angles fall 
within three standard deviations of the distributions for the given circle it has passed through. At 
this point, if the angle is over three standard deviations, we would then classify this as an anomaly, 
otherwise, it would be considered a normal movement (a depiction of a normal and anomalous 
track is shown in Figure 11 panel a). If multiple anomalies happen within the same area, within a 
small time period then this would then potentially indicate the presence of some obstacle or debris 
in the road which vehicles are trying to avoid.  

Nevertheless, challenges remain regarding accurate measurement of anomalies in vehicle speeds. 
Such measurements require the identification of the unique vanising points for each traffic camera 
separately. Although there exists a body of work on this topic, the existing methods have severe 
limitations that would make a commercial implementation of this anomaly detection methodology 
rather challenging. 

 
5.3 Data Management 
 
Another potential challenge towards commercialization of the use of Deep Learning techniques 
for analyzing traffic camera footage is the setup of an automated pipeline for fast real-time data 
acquisition and reduction from cameras. This project heavily relies on the use of big data to infer 
insights into anomalous patterns in traffic. Although the input data can be on the order of 
Megabytes per second, it can be rapidly analyzed and subsequently discarded or reduced after the 
analysis and stored in a device for future reference.  
 
For the goals of this project, we realized that the storage and computational capacity of a regular 
modern desktop computer was sufficient for prototyping and testing. However, for future larger 
scale commercial implementations of such techniques, the use of a large, dedicated filesystem for 
safe long-term storage of such data would be essential. The infrastructure for such activities 
already exists, for example, at Supercomputing centers like the Texas Advanced Computing 
Center. Partnership between cities and supercomputing centers could be established for setting up 
automated pipelines that collect data directly from traffic engineering centers, reduce it, analyze 
it, and store the results securely for long-term usage and inference. 

 

Chapter 6: Discussion and Conclusion 
 
Efficient detection and prediction of the locations of Vehicle-Wildlife Encounters (VWEs), 
Vehicle-Debris Encounters (VDEs) as well as Vehicle-Pedestrian Encounters (VPEs) have long 
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been considered as challenging unresolved problems in traffic engineering. Such encounters are 
costly as they are frequently followed by an incident. Identifying the root causes of these 
encounters and resolving them could reduce the frequency of such events and the associated costs.  

This project explored the idea of using traffic camera footages for automatic detection of such 
close encounters via artificial intelligence in the hope that the potential underlying causes could 
be identified more efficiently, thus reducing the environmental, societal, and financial costs 
associated with such incidents. 

In this work, we explored the existing literature on the approaches to VWE, VDE, and VPE 
detection. Common techniques used in deep learning for image analysis such as the basics of CNNs 
and background subtraction were also studied and detailed. Challenges for efficient accurate image 
segmentation of traffic camera footages were also identified and discussed. 

A major challenge in image segmentation of traffic camera footage is the determination of the 3D 
perspective from 2D camera images. Although there is a vast amount of research on this topic, the 
majority of the existing techniques require some level of manual input to the algorithms, such as 
the camera height, lane width spacing, width of lane markings, etc. The feasibility of these 
methodologies, therefore, dramatically decreases with the scale of projects that deploy such 
techniques since each camera would have to have its own uniquely tuned image segmentation 
algorithm. Furthermore, there is no guarantee for the lack of a need for subsequent tuning of the 
algorithms as the camera settings and locations can change over time. 

Similarly, there seemed to also exist a significant number of studies on the topic of road debris 
detection. The majority of these methods, however, use Radar or LiDAR technologies on 
autonomous vehicles. Consequently, these techniques are not applicable to the detection of road 
debris in traffic footage collected by live static cameras. 

A viable approach to automatic real-time road debris and anomaly detection is the state-of-the-art 
object detection algorithms. Based on tests that we have performed as part of this project, we found 
that algorithms such as YOLOv4 offer a fast method of object detection on roads without 
sacrificing precision to a great degree. Such algorithms (pre-trained with related labeled traffic 
images) could be combined with other algorithms (e.g., DeepSORT) to reconstruct the tracks of 
different moving objects in traffic camera recordings, thus reducing the entire visual data to sets 
of points that require orders of magnitude less storage space without sacrificing any accuracy or 
precision in inferences or detection of anomalies on roads. This resolves the problem of data 
storage one would envisage for this project, even at a larger-scale commercial implementation. 

Two challenges remain outstanding with the use of pre-trained algorithms for automatic analysis 
of traffic camera footage: 1) automatic determination of perspective from 2D images, which is 
essential for automated detection temporal and spatial anomalies in traffic (such as sudden change 
of speed or change of lane among a single or a group of cars, 2) improving the accuracy of 
inferences, which requires continuous training of the models with newly labeled traffic data. 

Additionally, several other issues must be resolved to ensure the scalability of the proposed 
methodologies and ideas in this project on a larger scale. Most importantly, traffic cameras on the 
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road frequently vibrate. These vibrations could be due to wind or due to passing of heavy 
machinery from nearby. This is particularly the case for cameras mounted on bridges. Although 
the existing algorithms are capable of accurately detecting objects within individual frames even 
in the presence of significant vibrations, such movements present a challenge for anomaly 
detection discussed in this project as these techniques require registration and matching of 
numerous snapshots of the same location monitored by a single camera footage. Rapid significant 
vibrations can easily change the background landscape viewing angle of camera, potentially 
making image registration impossible. Further studies are required to quantify the extent of the 
impact of camera vibrations on the utilities of the methodologies discussed in this project.  
 
Another major issue that remains to be solved is the analysis of camera footage collected at 
nighttime. However, we consider this problem more of a technological, as opposed to algorithmic, 
issue which could be potentially resolved with the arrival of better technologies for nighttime 
surveillance at scale on roads and highways. 
 

In conclusion, we set up a method for retrieving live traffic camera footage, from different areas 
throughout the country that seemed to have the highest-quality camera recordings. Ideally, we 
aimed for camera footages from with Dallas-Fort Worth Metroplex. However, our initial searches 
for high-quality camera footages from DFW, comparable to those found from other parts of the 
country, were fruitless. Our preliminary studies and experimentations exhibit the feasibility of the 
proposed approaches to automatic detection of traffic anomalies via traffic camera footages, 
although several outstanding issues (discussed in the above paragraphs) remain to be resolved.   
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